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Aeroacoustic Computation of Cavity Flow in Self-Sustained 
Oscillations 

Sung-Ryong Koh, Yong Cho, Young J. Moon* 
Department o f  Mechanical Engineering Korea University, Seoul 136-701, Korea 

A computational aero-acoustic (CAA) method is used to predict the tonal noise generated 

from a cavity Of automobile door seals or gaps at low flow Mach numbers (M==0.077 and 

0.147). In the present method, the acoustically perturbed Euler equations are solved with the 

acoustic source term obtained from the unsteady incompressible Navier-Stokes calculations of 

the cavity flow in self sustained oscillations. The aerodynamic and acoustic fields are computed 

for the Reynolds numbers based on the displacement thickness, Ree ,=850 and 1620 and their 

fundamental mode characteristics are investigated. The present method is also verified with the 

experimentally measured sound pressure level (SPL) spectra. 

Key Words: Cavity Tone, Feedback Mechanism, CFD, Computational Aero-Acoustics 

(CAA) 

I. Introduction 

The cavity noise is a common noise source in 

many of the transport systems. The noise is gen- 

erated by a self sustained, periodically oscillating 

shear layer impinging on the downstream cavity 

edge. The unsteady nature of the flow is derived 

by a feedback mechanism; free shear layer in- 

stability, vortex roll-up, its impingement to the 

downstream cavity edge, and upstream propaga- 

tion of fluidic/acoustic disturbances, all in a 

self-sustained feedback loop. Research on this 

subject has extensively been conducted for high 

speed flow applications (Roshiko, 1955; Maull 

and East, 1963 ; Rossiter, 1964; Tam, 1976; 

Sarohia, 1977 ; Tam and Block, 1978 ; Colonius et 

al., 1999) such as aircraft bomb bay, landing gear 

box, and etc., and the Rossiter's semi-empirical 

formula (Rossiter, 1964) has widely been used for 

data correlations. 

The cavity noise is also considered as one of 
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the automobile airframe noise sources. Our in- 

terest is on the tonal noise generation particularly 

from the automobile door seals or gaps. Figure 1 

schematically illustrates a two-dimensional view 

of its cavity lip configuration. The door cavity 

is usually exposed to the flow in the range of 

100--200 km/h (27.8--55.6 m/s or M = = 0 . 0 8 -  

0.16), a typical cruising speed in the highway. 

The flow speed is very low subsonic compared to 

the aforementioned high speed flow applications, 

and thereby the acoustic wavelength far exceeds 

the characteristic dimensions of the cavity. A mec- 
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hanism mainly responsible for the self-sustained 

oscillations of the present case is the amplifica- 

tion of the free shear layer instability enhanced 

by the upstream propagating fluidic disturbances 

from the downstream cavity edge (Rockwell and 

Naudascher, 1978). An experiment was conduct- 

ed by Henderson (2000) ['or the door cavity-lip 

configuration as shown in Fig. t. In the experi- 

ment, two cases of turbulent boundary layer flows 

are considered ['or the free stream velocities of 

26.8 m/s (case 1) and 50.8 m/s (case 2), and the 

boundary layer thickness is correspondingly 15 

mm and 19 mm each at the trailing edge of the 

cavity lip. The tonal noise characteristics of the 

flow are strongly indicated by the sound pressure 

level (SPL) spectra measured at the left vertical 

wall inside the cavity. 

In the present study, a computational aero- 

acoustic (CAA) method (Hardin and Pope, 1995 ; 

Shen and Sorensen, 1999) is used to numerically 

simulate the sound noise radiation from the door- 

cavity, with the acoustic source obtained by the 

computational fluid dynamics (CFD) calcula- 

tions. For primarily concerning the effect of flow 

instability (Colonius et al., 1999) affected by the 

Reynolds number based on incoming displace- 

ment (or momentum) thickness, flows are as- 

sumed laminar with the same incoming velocities 

as the experiment but reducing the boundary layer 

thickness to 10% of the cavity base length, L. The 

corresponding Reynolds numbers based on the 

displacement thickness are 850 and 1620 and 

these are certainly within the range of laminar 

instability of the free shear layer, i.e R e ~ . = 6 0 0 -  

3000. Our objectives are to simulate the aero- 

dynamic and aero acoustic fields of the cavity 

flow, investigating their fundamental mode char- 

acteristics and to verily the present computational 

methods with the experimentally measured sound 

pressure level (SPL) spectra. 

2 .  C o m p u t a t i o n a l  M e t h o d o l o g y  

There exits a large disparity between the aero- 

dynamic scales and the acoustic ones, if the flow 

Mach number is close to an incompressible flow 

limit. For this reason, a splitting method pro- 

posed by Hardin and Pope (1995) and Shen and 

Sorensen (1999) is employed, which decouples 

the direct numerical simulation (DNS) approach 

into an incompressible flow problem and an 

acoustically perturbed one. in the present study, 

the incompressible Navier-Stokes equations are 

time-accurately solved on the triangular meshes 

by a cell-centered based unstructured finite vol- 

ume method. Then, a set of acoustically perturbed 

Euler equations are solved on the structured 

cartesian meshes with the acoustic source of 

time-periodic viscous flow solutions. 

2.1 Unstructured incompressible flow solver 
algorithms 

The incompressible Navier-Stokes equations in 

a conservative vector form are written as 

cZO , OF , cZG I { 3Fv + OGv ) ( 1 Ot ~ Ox t-Oy = R e  \ Ox c3y 

where 

, F =  , G = u v  (2) 

uv j [v2+pJ 

3Q Gv=lm OO /;°:/ F~=I,. Ox" ~y,  Ira:  I (3) 
[0 1] 0 

Here a subscript v denotes the viscous terms and 

Re  is the Reynolds number. 

Equation (1) is time-accurately solved by a 

projection method based algorithm (Chorin, 

1967; Hirt and Cook, 1972). The momentum 

equations are advanced in time by a four-stage 

Runge-Kutta method, and the time accurate so- 

lution is obtained by iterating the procedure be- 

tween n and n + l  time steps, until the continuity 

is satisfied at each time step. 

The governing equation (I) is spatially dis- 

cretized on the triangular meshes by a cell-cen- 

terbased unstructured finite-volume method. The 

discrete form of the momentum equations is writ- 

ten in a conservative form as 

E( ( ' 11 At = - j = ~  F -  F0 Ay- G-ReG~ A x  (4) 
l=h(i,j} 

where i is a center cell index, j is a neighboring 
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cell index, g is a mapping relation between i and 

j cells, h is also a mapping relation for the cell 

face index l which i and j cells share, and A is a 

cell area. A second-order  upwind differencing 

scheme is used for the convective flux terms in 

Eq. (4) by fol lowing a M U S C L  approach (Van 

Leer, 1979), while the terms related to the viscous 

fluxes are treated by a centered scheme. 

A discrete integral form of  the Poisson equa- 

tion is expressed on the t r iangular  meshes as 

( ¢ x A y - - ¢ , A x ) , =  52 ( ~ A v - - # h x ) ~ ( 5 )  
j - g ( i )  J = g ( i )  
l - -h ( i . j )  l = h ( i , j )  

where the gradients Cx and qSy at the cell l:ace l 

are area-weighted between two adjacent cells i 

and j with each gradient obtained by the discrete 

surface integral. 

The final form of the discretized Poisson equa- 

tion is then written in an explicitform as 

C l ¢ ,  = D , . -  C~ (6) 

where 

V 2A:A: 
Cl=~:~i L A (A/-,~/ ~ A,. + A:I 

i=hlAj) 

D,.= Z [~Ay-~Ax], 
.i=g(il 
l=hfl',j) 

[A;#~+Ai& 
= X L- ~ A s ' ,  

j=g(i) 
t=h(i,j) 

(5'5? A~-Aj ] A,,IA,+A/ 151 (7) 

(8) 

Ai+Aj 

;:~,, ,~4 +A, ¢A +A/ ¢A:¢,+A:¢sl A,~A +A, !51¢, 
l =h {~ , : )  

(9) 
+ 2 A, t 2. "~ .&¢/-A:¢k ) 

l=h(i,j) " ttn=h(j,h) 

and gt represents a vector tangent to the cell face 

l with a magni tude ofthe cell face length, j '  

denotes a center cell index sequential  to j accord- 

ing to the mapping relation g(i) ,  and l '  is a cell 

face index defined in the same manner  as j ' .  

F igure  2 shows a schematic of  the numerical  

stencil (10 cells) and index definitions used in 

Eq. (14). The Poisson equat ion is then iteratively 

solved by a pointwise Gauss Seidel method. For  

the intermediate velocities at the cell faces in 

Eq. (5) or (8), averaging the velocities of  two 

adjacent cells i and j would result in an odd-even  

Fig. 2 
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Numerical stencil and index definitions for 

the discretized Poisson equation in unstruc 
tured grid formulation 

decoupl ing of  the pressure field. Therefore the 

velocities at the cell laces are re-defined by a 

momentum interpolat ion technique used by Rhie 

and Chow (1983). 

2.2 Computational aero-acoust ie  algorithms 
The acoustic fields are computed by a splitting 

method proposed by Shen and Sorensen (1999). 

The instantaneous velocities, pressure, and densi- 

ty are decomposed into the hydrodynamic  vari- 

ables at a mean-s ta te  and the acoustically pe- 

rturbed quantit ies denoted by a prime, 

ui= Ui + ui' 

p = P + p '  (10) 

P=Po+ P' 

Inserting the decomposed variables into the com- 

pressible Navier -S tokes  equations,  a set of  acous- 

tic field equat ions are derived by subtracting the 

incompressible Navier  Stokes equat ions from 

them ; 

Op'+ ofi=o (11) 
pt 3x~ 

a: i  + A _  ' ' o Ot 8x~ Ifi(Uj+uf)+poUzu~ +P 3u] = (12) 

ap' +c2 Of,._ 3P (13) 
Ot Ox, 3t 

where f i : pu i ' + p ' U i ,  C2=TP/p, and 7 = 1 . 4  is a 

ratio of  specific heats. 

Equat ions  (11)- (13)  are numerical ly solved by 
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the second-order accurate MacCormack's predic- 

tor-corrector scheme, in coupled with the un- 

steady incompressible flow computations. The 

acoustic field calculation can be started with an 

initial condition (p '=u '=v '=p '=O)  anytime 

after a periodically oscillating flow solution is 

obtained. For the present scheme, 20--25 mesh 

points are used per one acousitc wavelength, 

which is strictly required in order to properly 

resolve the wave propagation with the least nu- 

merical diffusion and dispersion errors (Hardin 

and Pope, 1995). In the computation, a fourth- 

order artificial dissipation term is also added to 

Eqs. (11)- (13) to stabilize the numerical scheme. 

The numerical accuracy of the present splitting 

method was validated by Shen and S0renson 

(Shen and Screnson, 1999). 

In computational acoustics, the problems in- 

volving wave reflections are issued very impor- 

tantly because the physical domains are necessa- 

rily truncated due to the limitation of a finite 

computational domain. Thus, at these artificial 

boundaries, non-reflecting or absorbing numeri- 

cal boundary conditions are needed so that out 

going waves are not reflected into the com- 

putational domain. In the far-field buffer zones, 

the Perfectly-Matched Layer (PML) equations 

(Hu, 1996) are applied by splitting each of the 

flow variables (P':Pl'+P~') and by segregating 

the spatial gradients into each split equation 

(the pL' equation only includes the x~ gradients). 

for example, Eq. (I1) is written as 

0/91' ~_ ; . 9 f l - - 0  
3t vxpl + ~ f ( - -  

(14) 
3p2' t_ , ,  3f2 0 
3t ~yP2 + 3X2 

The damping parameters are defined as 

D 
(15) 

~ ,=~m( [ Y-Y°  I ) ' 
D 

where gm and /~ are the damping coefficients, and 

the thickness of the PML domain D is defined 

such that x0 and Yo are the location of the in- 

terface between the interior and PML domains. 
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3. Computat ional  Resul t s  and 

Di scuss ion  

3.1 Computational details 
Two cases of laminar boundary layer flows 

with free stream velocities of 26.8 m/s and 50.8 

m/s are computed for the cavity-lip configura- 

tion as shown in Fig. 1. The flow is air and the 

boundary layer thickness is 10,% of the cavity base 

length (L) at the trailing edge of the cavity lip. 

The Reynolds numbers based on the displacement 

thickness, Ree. are correspondingly 850 and 1620. 

The dimensions of the cavity lip configuration 

are presented in Fig. 1 and all the length scales 

are normalized by the cavity base length in the 

computation. 

Figure 3 shows the computational meshes con- 

sisted of 11,240 triangular cells, which basically 

comprises the upstream boundary layel, cavity, 

and downstream region. One hundred and ten 

points are distributed in the streamwise direction 

for the upstream region, where a boundary layer 

develops into a thickness close to O. IL at the 

(a) Global view of the cavity-lip configuration 

(b) Close-up view near the cavity opening 

Fig. 3 Computational meshes (I 1,240 triangular 
elements) 
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trailing edge of the lip. A uniform flow is used 

as an inflow boundary condition, a l though this 

region could be shorten by imposing a Blasius 

solution along the inflow boundary. From the 

numerical exercises, however, there exit some 

cases where the pressure waves propagating from 

the downstream cavity edge makes the upstream 

boundary layer unfavorable or sometimes separat- 

ed. Therefore, a full inclusion of the boundary 

layer was necessary, instead of enforcing apres- 

cribed inflow boundary condition. 

As it was mentioned, the feedback mechanism 

is generated by the upstream propagating fluidic 

disturbances from the downstream cavity edge 

and the subsequent enhancements of the vortex 

shedding from the trailing edge of the lip. There- 

tore, the mesh resolution around the cavity-lip is 

very important. In the present computation, 40 

points are used across the lip, 60 points along the 

lip, 80 points along the cavity opening, and 100 

points along the leftvertical wall inside the cavity. 

The mesh details around this region are shown in 

Fig. 3 (b). Also, for resolving the instability of the 

free shear layer, a minimal normal spacing of 

0.001 from the wall is used for the case 1, and 

0.0005 for the case 2, with 100 points distributed 

in the y-direction from the wall to the top 

boundary. 

For the downstream region, 200 mesh points 

are distributed to resolve the convection of the 

vorticity waves. It is of our concern that improper 

numerical damping of vorticity waves may have 

an upstream-effect on the time-dependent accu- 

racy of the flow. This will further be discussed in 

Section 2.2. One other important element is also 

the treatment of the outflow boundary condition. 

In the present study, a convective boundary con- 

dition (Pauley et al., 1990) was imposed along 

the outflow boundary for the proper wave trans- 

mission. For example, a quasi one dimensional 

wave equation 3~/Ot+cOdp/3x=O is solved 

numerically at the boundary, where ¢~ is either u 

or v and a local streamwise velocity at one grid 

point upstream from the boundary is used for the 

local wave speed c. 
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3.2 Cavity flow in self-sustained oscilla- 

tions 

The computational results of self-sustained, 

periodically oscillating flow over the cavity are 

presented. Figure 4 shows the time-periodic solu- 

tions of vorticity contours for the case 1 at its 

shear layer mode one. Figure 4(a), at t : tU®/ 
L=35.9,  corresponds to the cavity at the ex- 

pansion mode, while Fig. 4(b),  0.41 Tapar t  from 

4(a), is at the compression mode. One can also 

see the propagation of vorticity waves shed from 

the downstream cavity edge. A time-dependent 

flow characteristics of the normal component v-  

velocity right before the downstream cavity edge 

is presented in Fig. 5. The period of oscillation 

computed for the case 1 is 1.47 (in a non-dimen- 

sional time), which corresponds to S t = f L /  
Uoo=0.68, or f = 1 2 1 5  Hz. Fhe case 2 also exhi- 

bits a solution at the shear layer mode one, which 

corresponds to a period of 1.55 (S /=0 .65  or f =  

2080 Hz). The fundamental mode flow charac- 

teristics of both case 1 and 2 will later be con- 

firmed by the experimental data in Fig. 10. 

The periodicity of self-sustained oscillations of 

the flow is well captured with the present com- 

putational meshes (called gr id-A) ,  although this 

computation is quite sensitive to the grid resolu- 

(a) Expansion mode 

Fig. 4 

/ /  } 

(b) Compression mode 

Instantaneous vorticity contours (Case I, 
Re~,=850) 
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Time-dependent flow characteristics at the 
fundamental mode (v-velocity) 

tion parameters. The grid sensitivity tests have 

been conducted ; ( i ) by doubl ing  the min imum 

normal  grid spacing at the wall (called g r id -B)  

and ( ii ) in addit ion to ( i ), by halving the grid 

points in the streamwise direction for the down- 

stream region (called g r i d - C ) .  The computed 

results of  v-velocity at the downstream cavity 

edge are presented in Fig. 6, showing that the 

periodicity of oscil lation starts to break from the 

g r i d - B  calculat ion and becomes even worse on 

the g r id -C .  The grid sensitivity tests seem to 

indicate that the grid resolution in the down- 

stream region could impose different numerical  

impedances to the vorticity waves and conse- 

quently have an upstream-effect on the oscilla- 

tions of the shear layer. 

3.3 Tonal noise 
A tone generated by the self-sustained oscilla- 

C o p y r i g h t  (C) 2003 NuriMedia Co., Ltd. 

Fig. 6 
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Fig. 7 Cartesian meshes for the acoustic field com- 
putation 

tions of the shear layer over the cavity is comput-  

ed by using the cartesian meshes shown in Fig. 7. 

Since the flow Mach number  of  the case 1 is 

0.077 and the computed Strouhal number  of the 

flow oscillation is 0.68, the acoustic wavelength 
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Tonal noise radiation (Case I, M~=0.077) 

of  the radiated tone can approximately be esti- 

mated as 19 based on the relation of  J / L = I /  

( S t ' M ~ ) .  The acoustic computat ional  domain is 

therefore stretched out to 60L to include 2 or 3 

wavelengths of  the sound waves. The number of  

grid points for the acoustic field computat ion is 

determined by the Pact that 2 0 ~ 2 5  pointsbe in- 

cluded per wavelength, in order to minimize the 

numerical dispersion and dissipation errors of  

the MacCormack ' s  second-order  scheme (Hardin 

and Pope, 1995). 

The computed sound pressure field is presented 

in Fig. 8(a) ,  where the dotted line indicates the 

boundaries  of  the PML zones. The shaded flood 

ing contours well illustrate the sound wave radia- 

tions from the automobi le  door  cavity. Notice 

that the cavity is shown as a little tiny prong near 

the origin of  the coordinate.  The computed acous- 

tic wavelength is 18~ 18.5, close to the estimated 

value of  19, and the highest intensity of  the 

radiated sound noise is between 135°~180 °. The  
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(al Sound pressure field 
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(b) Time history of p' inside the cavity 

Fig. 9 Tonal noise radiation CCase 2, M~=0.147) 

cavity inside experiences a lateral mode of  com- 

pression and expansion, its the shed vortex from 

the lip rolls up and impinges off the downstream 

cavity edge, ahernately. Figure 8(b) shows the 

time history of  the sound pressure at the center of  

the left vertical wall inside the cavity, and the 

predicted sound pressure level (SPL) of  the tonal 

noise is 118 dB at 1215 Hz. The sound pres- 

sure level is obtained by SPE (dB) = 2 0  log r ~ s  
/ ~ r e f  

where P r e / - - 2 × 1 0  Spa. Even though the com- 

putat ional  flow condi t ion (thin laminar boun- 

dary layer) is somewhat  different from the ex- 

periment (relatively thick turbulent boundary 

layer),  quanti tat ive comparison is within the 

range. As shown in Fig. 10, the measured S P I  

spectra indicate that the case 1 at very low flow 

Mach number  of  M~--0.077 seems to experience 
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a dual shear layer mode of one or two. Therefore, 

the tonal noise characteristic is not so strong as 

the case 2. The computed frequency is quite 

closely compared with experiment at the mode 

one, although the sound pressure level was some- 

what over-predicted. 

The computational result of the case 2 ( S t =  

0.65 or 2080 Hz) is presented in Fig. 9. As shown 

in Fig. 9 (a), the computed acoustic wavelength is 

9.5, quite close to the estimated value of 10. 

Figure 9(b) also shows the time history oi" p" at 

the left cavity wall, predicting the SPL of 133 dB. 

The tonal noise frequency and SPL of the case 2 

are quite closely compared with experiment in 

Fig. 10. In comparison with the case 1, the fun 

damental mode characteristic is more evident, 

due to the increased compressibility effect at the 

flow Mach number of M==0.147. 

4. Conclusions 

A tonal noise fiom a cavity of automobile door 

seals or gaps is computed by a computational 

aero-acoustic (CAA) algorithm, acquiring the 

acoustic source from the unsteady incompressible 

Navier-Stokes calculations of the cavity flow in 

self-sustained oscillations. 

The aerodynamic calculations of the cavity 

flow involving feedback are found to be quite 

sensitive to the mesh resolution around the cavity 

opening, due to the fact that the excitation of the 

free shear layer instability is strongly coupled 

with the upstream propagating fluidic distur- 
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bances generated from the downstream cavity 

edge. Numerical difficulties were also encoun- 

tered in capturing the time-periodic behavior of 

the flow, without properly resolving the down- 

stream propagating vorticity waves and their 

transmissions through the outflow boundary. 

The acoustic fields of the cavity flow are suc- 

cessl'ully computed by the present CAA method 

for the low Mach numbers of M~=0.077 and 

0.147• The wavelengths and frequencies of the 

case 1 and 2 are quite favorably compared with 

the experimentally measured frequency spectra at 

the shear layer mode one. The sound pressure 

level of the tonal noise predicted by the CAA 

method is also closely matched with the experi- 

ment of case 2, while the SPL of the case 1 is 

somewhat over predicted due to the less evident 

fundamental mode characteristic of the cavity 

f l O W .  
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